Manipulating Pig Production XIV

Proceedings of the Fourteenth Biennial Conference of the Australasian Pig Science Association (APSA)

Melbourne, Australia

24th - 27th November, 2013

Edited by Professor John Pluske and Dr. Jo Pluske
AUSTRALASIAN PIG SCIENCE ASSOCIATION (INC.)
Werribee, Victoria, Australia

Preface and Table of Contents

©Copyright 2013 by the Australasian Pig Science Association (Inc.) Werribee, VIC 3030, Australia.
Preface

The importance of research and innovation for the national and international pork industry has never been so crucial. The volatility in global cereal and oilseed protein meal prices has continued, and the business environment is still stagnating from the global financial crisis. However, the latest major driver for change in pork production, and hence the demands in research and innovation, is coming from the large corporate supermarkets, animal rights groups and general consumers of pig meat. This has given a new focus on the requirement of knowledge, particularly on low environment impact systems, antibiotic-free diets, pig welfare and sow-stall-free production systems. With this in mind, the A.C. Duncan Memorial Lecture will provide an overview of the roles and functions of science in establishing animal welfare recommendations and standards while trying to balance the expectations of consumers and animal rights groups.

There is still a large amount of research and new information being generated in pig science and pork production, but reductions in funding have created a reduction in extension services to producers. In this context, the committee of the Australasian Pig Science Association (APSA) thought it important to highlight during the conference, the importance of delivering science for maximum industry benefit, outlining current problems and issues and potential solutions from an end-user and an academic point of view. The remaining invited papers and symposia present recent research and relevant information on nutrition and management of the prolific sow, monitoring herd health and immunity, gastrointestinal tract barrier function and systemic response to nutrition and management, and genomic approaches for quantifying microbial communities to the benefit of the pig industry; an environmental perspective. Additionally, the 126 refereed one-page papers in Manipulating Pig Production XIV guarantee that the conference program will have something for everyone associated with the pork industry.

Since its inception, the APSA conference has provided an excellent forum to present new findings, foster in-depth discussion, and hopefully provide solutions to some of the industry problems. The 14th APSA meeting upholds these aims and provides a real opportunity for researchers to present their findings to their global peers, and interact with key industry figures and organisations.

The Cooperative Research Centre (CRC) for High Integrity Australian Pork and Australian Pork Limited (APL) have been integral in funding the majority of the research and development in Australia, as well as training undergraduate and postgraduate students and generating junior scientists. APSA outwardly promotes the involvement of students and early-career scientists, both privately and publically funded, at the meeting, and again the conference has a considerable number of young scientists attending and presenting their work.

It has been a great honour to preside over APSA for the last two years and to have contributed in facilitating the networking of many of those involved in pork production. Thank you for making the meeting a great success and I hope you will continue to be part of the future success of the Association.

Dr David Cadogan, President
Contents

List of contributors .. xiii
APSA Awards ... xix
The APSA Fellow Award .. xix
The Batterham Memorial Award .. xix
APSA - Behind the scenes .. xx
Acknowledgements: Dr David Cadogan, APSA President .. xxii
APSA Sponsors 2013 ... xxiii
Acknowledgement to Referees ... xxv
Preface: Dr David Cadogan, APSA President .. xxviii

Chapter 1: The A.C. Dunkin Memorial Lecture .. 1
The role of science in improving animal welfare ... 3

P.H. Hemsworth

Chapter 2: Delivering Science for Industry Benefit ... 19

Opinion: Delivering science for maximum industry benefit: A commercial perspective on enhancing research outcomes for the pork industry ... 21

R.J. van Barneveld

Opinion: Delivering science for maximum industry benefit: An academic’s perspective 30

D.W. Pethick

Eating quality linked to ultimate pH and tenderness in Australian fresh pork 34

C.G. Jose, M. Trezona, H.A. Channon and D.D. ‘Souza

Piglet mortality in the PigSAFE loose farrowing system compared to farrowing crates during autumn and winter ... 35

R.S. Morrison, M. Farish, M.C. Whyte and E.M. Baxter

Pig appeasing pheromones reduce duration of aggression but not cortisol levels in newly-mixed gestating sows ... 36

K.J. Plush, P. Herde U.A. Rajapakse, P.E. Hughes, and W.H.E.J. van Wettere

Chapter 3: Feed Preference, Applied Nutrition and Grains .. 37
Umami-enhanced feed intake in weaned pigs increases plasma cholecystokinin and insulin 39

R. Palou, B. Shrestha, S. Anderson and E. Roura

Pig preference for flavours conditioned by post-ingestive consequences under protein deficiency after weaning ... 40

S.A. Guzmán-Pino, D. Solà-Oriol, J. Figueroa and J.F. Pérez

Influence of dietary electrolyte balance on feed preference, appetite and performance in post-weaned pigs ... 41

S.A. Guzmán-Pino, D. Solà-Oriol and J.F. Pérez

Pigs show high sensory-motivated intake for low levels of dextrose but not for low levels of maltodextrin ... 42

E. Roura B. Shrestha and S. Diffey
Pigs show high preference and sensory-motivated intake for low levels of tartaric and phosphoric acids

E. Roura, B. Shrestha and S. Diffey

Preference thresholds and sensory-motivated intake for four high intensity sweeteners in piglets

E. Roura, B. Shrestha and S. Diffey

Pigs show no sensory-motivated intake for several cereal and tuber starches except hydrolysed corn starch

E. Roura, B. Shrestha and S. Diffey

Isoenergetic diets differing in arabinoxylans or β glucans show similar taste receptor expression profile in pig tongue

M. Rzepus, N. de Jager, M. Preston, M.J. Gidley, B.A. Williams and E. Roura

Towards defining the taste receptor repertoire in the pig

N. de Jager, M. Zhan, M. Rzepus and E. Roura

Pre- and post-natal flavour exposure through maternal diet modifies feed preference and productive performance in post-weaned pigs

L. Blavi, D. Solà-Oriol, J.J. Mallo, L. Mesas, A. Ortiz and J.F. Pérez

Increasing valine:lysine but not isoleucine:lysine in diets improves growth of pigs after weaning

C.J. Brewster, D.J. Henman, C.L. Collins, K.S. Sawyer, T.N. McDonald and B.G. Luxford

Formic acid supplementation in phytase-containing pig diets improves phosphorus but not zinc utilisation

R. Blank, M. Naatjes, J. Riscewski, P. Ader and A. Susenbeth

Performance and energy utilisation in weaner pigs supplemented with high levels of exogenous phytase

D.J. Cadogan, C.L. Collins, A. Péron and G.G. Partridge

Effects of a microencapsulated blend of organic acids and plant extracts on performance and total-tract apparent digestibility in finishing pigs

H.L. Li, Y. Lei, Y.K. Kim and I.H. Kim

The effect of dam parity on growth of pigs differs between herds

S. Hermesch and L. Li

An update on near infrared reflectance analysis of cereal grains to estimate digestible energy content for pigs

J.L. Black, P.C. Flinn, S. Diffey and A.M. Tredrea

A survey of particle size and particle size variability of milled grains available for use in Australian pig feeds

Design and evaluation of a manual sieving device for monitoring particle size in feed manufacture

Chapter 4: The Gastrointestinal Tract and Applied Nutrition

Symposium: Barrier function and systemic response of the gastrointestinal tract to the aspects of management and nutrition: Introduction

J.R. Pluske and J.C. Kim
Symposium: Impact of the systemic response to stressors and subclinical and clinical infection on intestinal barrier function and growth in pigs .. 62

J.C. Kim, B.P. Mullan and J.R. Pluske

Symposium: Intestinal barrier function and systemic response of the gastrointestinal tract in pigs to aspects of management .. 77

A.J. Moeser

Symposium: Barrier function and systemic response of the gastrointestinal tract to the aspects of management and nutrition: Conclusions .. 84

J.R. Pluske and J.C. Kim

Betaine mitigates intestinal permeability in growing pigs induced by heat stress 85

Heat stress and feed restriction attenuates intestinal integrity in growing pigs 86

S.C. Pearce, D.M. van Sambeek, M.V. Sanz-Fernandez, L.H. Baumgard and N.K. Gabler

Feeding a diet containing raw potato starch influences faecal consistency and digesta pH in weaner pigs ... 87

J.M. Heo, A.K. Agyekum and C.M. Nyachoti

Effect of diet type on post-weaning diarrhoea in ETEC-challenged pigs and susceptibility towards F4ab/ac fimbriae ... 88

S.C. Pearce, D.M. van Sambeek, M.V. Sanz-Fernandez, L.H. Baumgard and N.K. Gabler

Addition of a xylanase enzyme complex to a corn-based diet influences gut morphology in newly weaned pigs .. 89

C.L. Collins, P. McKenzie, M. van der Heijden, K.S. Sawyer, C. Clark and B.G. Luxford

Pigs kept under commercial conditions respond to a higher dietary tryptophan:lysine ratio immediately after weaning .. 90

Xylanase improves nutrient digestibility and growth performance in pigs fed a wheat- and barley-based diet containing cereal by-products .. 91

The effects of dietary lysine concentration on growth performance of pigs from weaning to 15 weeks of age .. 92

A. Owusu-Asiedu, A. Péron, Y. Ru and G. Dusel

Role of resistant starch from different sources on *in vitro* production of short-chain fatty acids in a pig model .. 93

G. Giuberti, A. Gallo, M. Moschini, L. Fiorentini and F. Masoero

Chapter 5: Nutrition, Feed Additives and Feed Grains, and Physiology .. 95

Xylanase improves growth performance in grower-finisher pigs fed hard and soft wheat-based diets 97

E. Kiariie, A. Péron, Y. Ru and J. Wiseman

Effect of substrate type on *in vitro* dry matter and energy disappearance of pig grower rations formulated with and without the addition of a xylanase-based enzyme complex 98

A direct-fed microbial product increases production efficiency and reduces faecal ammonia levels in pigs

H.L. Li, Y. Lei, R.A. Valientes and I.H. Kim

Monosodium glutamate as a source of glutamic acid enhances weaner pig performance

R.J. van Barneveld, S.A. Knapp and R.J.E. Hewitt

A blend of organic acids and medium-chain fatty acids improves feed intake of lactating sows and weaning weight of piglets

N.S. Ferguson, P.J. Roubos, M. Richer-Lanciault and J.W. Resink

The use of an enzyme mixture to enhance growth and improve total tract digestibility in pigs fed diets with alternative ingredients

L.V. Bindhu, C. Sugumar and L-B. Goh

High feeding in late gestation subtly improves litter characteristics at birth and day 3 post-partum

W.H.E.J. van Wettere, T. E. Kennett, D.S. Lines, P. Herde and P.E. Hughes

Performance of piglets suckling sows fed ractopamine-supplemented diets

W.H.E.J. van Wettere, T. E. Kennett, P. Herde and P.E. Hughes

Effect of ractopamine feeding strategies during the first lactation on sow performance

W.H.E.J. van Wettere, T. E. Kennett, P. Herde and P.E. Hughes

Inclusion of spray-dried fish protein isolate in weaner pig diets improves feed intake

R.J. van Barneveld, R.J.E. Hewitt, S.A. Knapp and D. Isaac

Inclusion of spray-dried porcine plasma in non-medicated weaner diets maintains performance

R.J.E. Hewitt, D.J. Cadogan, S.A. Knapp and R.J. van Barneveld

A case study of algal meal as an energy and protein source in weaner pig diets

D.J. Henman

A survey of heavy metal contaminants in common trace mineral sources in the Asia Pacific region

T. Jarman and A.J.L Frio

Implications of the changing structure of the Chinese pig industry for feed additive manufacturers

M.P. Boddington

The influence of Danish versus Dutch feeding of lactating sows on piglet growth and milk composition: A pilot study

C. Amdi, A.T Nguyen, M. Pedersen and C.F. Hansen

Dietary vitamin E and aspirin supplementation influence the performance and incidence of post-weaning colibacillosis in pigs experimentally infected with an enterotoxigenic strain of E. coli

Dietary effects of β-glucan yeast on vaccine immune response and performance of pigs

The impact of dietary phytase on immune responses and performance of pigs

Different fibre sources fed to weaner pigs influence production performance and acute phase protein levels

Relationships between fibre intake and the expression of genes linked to incretin secretion in the gastrointestinal tract of weaner pigs

Influence of nutrient asynchrony on whole body protein retention rate in growing pigs ……….. 117

Digestible energy content for Berkshire triticale varieties depending on season and site ……… 118

J.M. Pluske, J.R. Pluske and J.C. Kim

Why pork producers should consider the value of triticale ………………………………………… 119

J.M. Pluske and J.R. Pluske

Particle size and particle size dispersion drive hydration of grains: Field peas (Pisum sativum L.) as a case study …………………………………………………………………………………………… 120

G.T. Nguyen, W.L. Bryden, M.J. Gidley and P.A. Sopade

In-vitro starch and protein digestion in field peas (Pisum sativum L.) reveal particle size dependence 121

G.T. Nguyen, W.L. Bryden, M.J. Gidley and P.A. Sopade

Chapter 6: Piglet Growth and Welfare, and Reproduction ………………………………………… 123

Less brain sparing occurs in severe intrauterine growth-restricted piglets born to sows fed palm fatty acid distillate ………………………………………………………………………………………… 125

C. Amdi, C.F. Hansen, U. Krogh, N. Oksbjerg and P.K. Theil

Intermittent suckling influences the performance of pigs before and after weaning …………… 126

D.L. Turpin, P. Langendijk, T-Y. Chen and J.R. Pluske

Voluntary feed intake by sows and weight gain by piglets in farrowing crates compared to UMB farrowing pens …………………………………………………………………………………………… 127

G.M. Cronin, G.F. Macnamara, R.L. Matthews, J.A. Barnsley, C.E. Williams, B.L.F. Macnamara, K.E. Bøe and I.L. Andersen

Stress responses of two-day-old piglets to tail docking ……………………………………… 128

R.S. Morrison, K.S.B. Sawyer, N.J. Kells, C. B. Johnson and P.H. Hemsworth

Electroencephalographic assessment of acute pain in piglets during tail docking ……… 129

N.J. Kells, N.J. Beausoleil, J.P. Chambers, M.A. Sutherland, R.S. Morrison and C.B. Johnson

Gas alternatives to carbon dioxide for euthanasia: A piglet perspective ………………… 130

J-L. Rault, K.A. McMunn, J.N. Marchant-Forde and D.C. Lay

Increasing feed intake in early gestation improves farrowing rate in first and second parity sows .. 131

K.S. Sawyer, R.Z. Athorn, C.L. Collins and B.G. Luxford

Ovulation rate and embryo survival are still major limiters of litter size ………………… 132

P. Langendijk, R.Z. Athorn, E.G. Bouwman and T-Y. Chen

Split weaning increases subsequent embryo survival of sows mated in lactation……………… 133

Chapter 7: Sow Reproductive Performance and Nutrition ……………………………………… 135

Symposium: Maximising productivity in the modern sow: Constraints to realising the genetic potential of the breeding herd and targeting nutrition for optimal productivity: Introduction …… 137

C.L. Collins

Symposium: Constraints to realising the genetic potential of the breeding herd ………………… 138

G. Foxcroft, M. Smit, M. Dyck and J. Patterson

Symposium: Feeding pregnant sows for optimum productivity: past, present and future perspectives 151

R.O. Ball and S. Moehn
Symposium: Maximising productivity in the modern sow: Constraints to realising the genetic potential of the breeding herd and targeting nutrition for optimal productivity: Conclusions ….. 170

C.L. Collins

Lactational oestrus can be induced using piglet separation and/or boar exposure in multiparous commercial breeding sows …………………………………………………….…… 171

Porcine spermatozoa interact with the uterine epithelium and modulate endometrial gene expression 172

A. Bergmann, U. Taylor and D. Rath

Effects of parity and supra-nutritional dietary antioxidants on the lactation performance of sows during summer ………………………………………………………………………………………………………. 173

F. Liu, C.L. Collins, D.J. Henman and F.R. Dunshea

Improving piglet birth weight viability through better maternal hygiene and nutrition in gestation … 174

Post-mating but not pre-mating dietary restriction decreases embryo survival of group-housed gilts … 175

P.C. Condous, R.N. Kirkwood and W.H.E.J. van Wettere

The effects of season and moderate feed restriction on oocyte developmental competence in cycling gilts ………………………………………………………………………………………….. 176

A.M. Swinbourne, J.M. Kelly, K.L Kind, D.J. Kennaway and W.H.E.J van Wettere

Chapter 8: Herd and Pig Health and Production ……………………………………………………… 177

Review: Use of oral fluids to monitor health and immunity in pig herds 179

J. Zimmerman

Review: Managing poultry health in Australia: Lessons for the pig industry 184

P.C. Scott

Pork producers can use their industry knowledge to prioritise exotic diseases 196

V.J. Brookes, M. Hernández-Jover, R. Neslo, B. Cowled, P. Holyoake and M.P. Ward

The potential value of MLVA to porcine Salmonella surveillance in Australia 197

Prevalence and molecular characterisation of Clostridium difficile in neonatal piglets in Australia. 198

D. Knight, M. Squire and T.V. Riley

Variation in the number of Lawsonia intracellularis shed in commercial pig herds over time 199

A.M. Collins and I.M. Barchia

Optimal pooling of faeces to quantify Lawsonia intracellularis in clinically and sub-clinically affected pigs ……… 200

A.M. Collins and I.M. Barchia

The effects of intraperitoneal vaccination with Lawsonia intracellularis on immune responses in weaner pigs .. 201

M. G. Nogueira, D. Emery, A. M. Collins and H. Dunlop

A comparison between meloxicam and ketoprofen in assisting the recovery of weaner pigs from illness or injury ………………………………………………………………………. 202

R.L. Wilson, P.K. Holyoake, G.M. Cronin and R.E. Doyle

Porcine colostrum supplementation increases serum immunoglobulin concentration of light piglets 203

C.F. Hansen, R. Müller, E. Kanitz, M. Tuchscherer and F. Thorup
Method analysis for a novel trait: comparing locations for haemoglobin sampling in piglets …… K.M. Tickle, C.L. Collins and S. Hermesch

Feeding live *Saccharomyces cerevisiae* CNCM I-1079 to the sow improves the vitality of piglets at birth: A multi-analysis of five trials …… D. Guillou, E. Chevaux, Y. Le Treut and A. Sacy

Chapter 9: Production, Disease, Environment and Product Quality ……………………. 207

Relationships between *in vitro* fertilisation and *in vivo* mating outcomes with boar semen ………… F.J. McPherson, B.M. Gadella and P.J. Chenoweth

Boar exposure and split weaning used in a commercial herd to induce oestrus in lactation ……. R. Terry, K. Kind, D. S. Lines, T.E. Kennett, P.E. Hughes and W.H.E.J. van Wettere

Oestrus induced in primiparous sows by intermittent suckling shows a bimodal distribution …… T.Y. Chen, A.L. Knight, E.G. Bouwman, D. Turpin and P. Langendijk

High growth rates during early pregnancy positively affect farrowing rate in parity one and two sows R.Z. Athorn, K.S. Sawyer, C.L. Collins and B.G. Luxford

Effect of split weaning on subsequent blastocyst development rates *in vitro* and embryonic gene expression ………...
Depletion-repletion of dietary iron increases total muscle and liver iron contents, but not aerobic capacity, in pigs ... 225

Soy lecithin decreases plasma total and LDL cholesterol but neither lecithin nor lupins has an effect on lean tissue or fat cholesterol levels in finisher pigs .. 226

J.P.A. Sweeny, G.M. Smith, M.D. Langridge, J.C. Kim, K.L. Moore, B.P. Mullan and M. Trezona

Eating quality of pork shoulder roast and stir fry outperform cuts from the loin and silverside in male pigs ... 227

H.A. Channon, D.N. D’Souza, A.J. Hamilton and F.R. Dunshea

Diet and slaughter age have minimal impact on pork eating quality .. 228

H.A. Channon, D.N. D’Souza, R.J. van Barneveld, R.J.E. Hewitt, A.J. Hamilton and F.R. Dunshea

Pig mortalities during transportation in Australia ... 229

S. Willis, J. Riley, G. Pope and K. Bell

Quantitative assessment of odour, dust and noise emission from free-range piggeries 230

T. Banhazi

Temperature effects on outdoor sow skin temperature: A measure of heat stress 231

A. LeMoine and H.M. Miller

Chapter 10: Meat Science and Technology, Sow Housing and Welfare 233

Gender, cut type, cooking method and endpoint temperature influence eating quality of different pork cuts ... 235

H.A. Channon, D.N. D’Souza, A.J. Hamilton and F.R. Dunshea

Lupins reduce carcass yield and increase the PUFA:SFA ratio in loin, ham and belly fat tissue of finisher pigs ... 236

J.P.A. Sweeny, A.J. van Burgel, M.D. Langridge, J.C. Kim, K.L. Moore, B.P. Mullan and M. Trezona

Development of immunoassay technology for the detection of ractopamine in pork products 237

J.L.Y. Tung, N. Ferguson, G.S.H. Lee and G.K. Tay

A quantitative microbial risk assessment of Salmonella spp. infection from consumption of Australian pork burgers ... 238

P.M. Gurman, T. Ross and A. Kiermeier

The behaviour of sows towards piglets in farrowing crates and farrowing pens in New Zealand … 239

Effects of gestation housing system on sow performance and longevity over three reproductive cycles ... 240

X. Li, G.C. Shurson, S.K. Baidoo, Y.Z. Li and L.J. Johnston

The duration of parturition is similar for confined and loose-housed sows 241

J. Hales, V.A. Moustsen, A.M. Devreese and C.F. Hansen

Comparison of the behaviour of piglets housed in loose pens and farrowing crates 242

C. Singh and P.H. Hemsworth

Behaviour of sows is dynamic at mixing into groups with free access shoulder stalls 243

The impact of stocking density on gilt and piglet performance and welfare in group lactation housing 244

A. Martyniuk, P.E. Hughes, K. Plush and W.H.E.J. van Wettere
Chapter 11: Environmental Microbiology, Environment and General Production ……

Review: Genomic approaches for characterising and quantifying microbial communities to the benefit of the pig industry-an environmental perspective ………………………………………………………………………………………………..

S.N. Jenkins

Review: Options for anaerobic digestion of piggery waste ……

D.J. Batstone, P. Gopalan, P.D. Jensen and S. Tait

Impact of DNA extraction method for faecal microbiome sequencing ……

Y. Lu, P. Hugenholtz and D.J. Batstone

Sizing pumps for desludging of covered piggery ponds ……

S. Tait, S. Birchall and M. O'Keefe

Waste production recorded in PigBal model validation trial ……

A.G. Skerman, S. Willis and E.J. McGahan

Application of veterinary thermography for the detection of sow lameness ……

T.L. Muller, S.K.J. Peucker, R.J.E. Hewitt and R.J. van Barneveld

Lameness in culled sows related to distal limb morphology and pathology ……

J.F. Bonnicci and P.L. Cakebread

Incidence of foot lesions in sows subjected to foot trimming interventions as gilts ……

R.J.E. Hewitt, S.K.J. Peucker, M.E. Wilson and R.J. van Barneveld

Feet trimming interventions in gilts and reproductive performance over the subsequent three parities ……

R.J.E. Hewitt, S.K.J. Peucker, M.E. Wilson and R.J. van Barneveld

Late gestation feeding: Effects on gilt performance ……

W.H.E.J. van Wettere, T.E. Kennett, D.S. Lines, P. Herde and P.E. Hughes

Late gestation feeding: Effects on sow performance ……

W.H.E.J. van Wettere, T.E. Kennett, D.S. Lines, P. Herde and P.E. Hughes

Feeding level during early pregnancy in sows: Effects on litter size and farrowing rate ……

G. Sørensen

Chapter 12: Index of Authors ……